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Abstract

Eye-tracking has been a useful process-tracing measure to disclose attentional

mechanisms in human decision making, such as in multi-attribute decision making.

In recent years, the field of multi-attribute decision making has been greatly advanced

by the development of formal computational models. However, most computational

models of multi-attribute decision making only deal with choices and response times.

To date, there has been no detailed investigation on combining eye-tracking measures

with computational models in multi-attribute decision making. This dissertation

aims to investigate possible approaches that integrate eye fixation data with com-

putational models, and to provide new insights into decision dynamics underlying

multi-attribute decision tasks. Specifically, I adopted and evaluated two different ap-

proaches to combine computational models with eye fixation data in intertemporal

choice and simple risky choice. The first fixation-modulated approach feeds eye fixa-

tion data into sequential sampling models as exogenous inputs, and predicts behav-

ioral responses based on combinations of feature values and eye fixations. The second

generative modeling approach predicts both choices and eye fixation data simulta-

neously through a single model structure with three essential cognitive components

- information sampling, feature representation, and preference formation. Different

model configurations under the generative modeling approach were constructed for
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both intertemporal choice and simple risky choice, where different models hold differ-

ent assumptions about feature representation in multi-attribute tasks. These models

were quantitatively fitted to experimental data from Amasino et al. (2019) and Stew-

art et al. (2016), with the synthetic likelihood approximation method and a set of

summary statistics, in a Bayesian framework. The models displayed good fits to the

experimental summary statistics. The model comparison results suggested large indi-

vidual variability regarding the relative performance of different model configurations,

where the attribute-wise generative model showed a slight advantage when aggregat-

ing across subjects, for both intertemporal choice and simple risky choice. Although

there is still room for improvement and generalization, the current work has opened

a novel way to successfully model behavioral and eye fixation data in multi-attribute

decision making.
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Chapter 1: Introduction

Understanding how human beings guide their attention and process information

in a noisy and uncertain environment is central to cognitive psychology. Tracking eye

movement has been used as a proxy for representing moment-to-moment attention

and inferring thought processes over long time periods. It is usually assumed that the

locus of eye �xations corresponds to the information being internally processed, and

that the duration of the �xation is considered as the time spent to encode and process

information (Just and Carpenter, 1976). Shifts in �xation locations are guided by

covert shifts in attentional focus (Kellough et al., 2008; Deubel et al., 1996; Henderson,

2003). The interrelatedness between eye movement and attention is further supported

by the shared functional anatomical areas in the human brain (Corbetta et al., 1998;

Van Gompel, 2007).

Over the past two decades, major advances in eye-tracking data collection have

allowed the use of eye movement data in understanding human decision making mech-

anisms (Orquin and Loose, 2013). By providing processing evidence over the time

course before making the overt choice, eye movement data o�er rich information to

investigate the dynamics of information processing, going beyond descriptive analyses

of eventual behaviors. Importantly, recording eye movements during decision mak-

ing does not alter choice behavior (Franco-Watkins and Johnson, 2011; Gl•ockner and
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Betsch, 2008b). Relying on eye movement data, researchers have found that gaze allo-

cation plays a causal role in constructing the decision (Shimojo et al., 2003), and such

a causal role motivated the development of formal cognitive models where eye �xa-

tions modulate the preference formation in various decision making tasks (Krajbich

et al., 2010; Krajbich and Rangel, 2011; Smith and Krajbich, 2018).

In earlier stages of analyzing eye-tracking data, what we know about the role of

attention in the decision making process is largely based upon performing statistical

analyses and drawing inference on eye �xation data (e.g., Russo and Dosher, 1983;

Svenson, 1979; Stewart et al., 2016). However, recent years researchers have made

great strides in incorporating eye-tracking data into computational cognitive mod-

els (Krajbich et al., 2010; Krajbich and Rangel, 2011; Gluth et al., 2020; Glickman

et al., 2019; Noguchi and Stewart, 2018), such that a theoretical and systematic un-

derstanding of the mechanistic roles of attention in the decision making process can

be gleaned. Despite the rich �ndings, controversies and di�culties exist concerning

how to leverage eye-tracking data into modeling cognitive processes. In this thesis,

I employ two di�erent approaches to model information processing with eye �xation

data in the decision making task, where the two approaches di�er greatly in their

theoretical bases of the eye �xation data: the �rst approach considers eye �xations as

the exogenous inputs to the cognitive models and is agnostic about attentional pro-

cesses, whereas the second approach explicitly explains the generation of eye �xations

and therefore treats eye �xations as part of the model output. The di�erence of the

two approaches is further elaborated in Section 1.2 of this Chapter.

The current dissertation seeks to explain the information processing using eye-

tracking data during multi-attribute decision making, where each choice option is
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composed of multiple attribute values. Only a limited number of studies have directly

tested decision making theories with eye-tracking data for this type of decision making

problem. Other closely related research topics are beyond the scope of this thesis but

will be referred to if the current work draws inspirations from them. For instance, the

current work is largely inspired by the eye �xation modeling work on simple decision

making tasks (Krajbich et al., 2010; Krajbich and Rangel, 2011). It is also worth

mentioning that in addition to eye �xation, other measures from eye-tracking data

can be considered as part of the computational model in future studies, such as pupil

dilation (Cavanagh et al., 2014; Lin et al., 2018), spontaneous eyeblink rate (Eckstein

et al., 2017), and microsaccades (Engbert et al., 2011). Also, eye-tracking is not the

only way to o�er process tracing evidences. Mouse tracing, for example, is also packed

with information about decision processes. The generalizability of the current work

will be discussed at the end of the thesis.

In what remains of this chapter, I �rst present a brief review on the research his-

tory of multi-attribute decision making, highlighting the theoretical debates between

option-wise and attribute-wise models. Next, I compare di�erent methodological

approaches in which eye �xation data are combined with computational models in

existing decision making literature. At the end of this chapter, I present the overall

structure of the dissertation and state the purpose of the current research.

1.1 Review of multi-attribute decision making

Decision making in a naturalistic environment often requires careful considera-

tions of several aspects. For instance, when deciding which restaurant to go for

dinner tonight, you probably would think through several aspects, such as location,
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restaurant environment, food taste, service quality, and so forth. An optimal decision

making requires properly identifying and weighing di�erent aspects, or attributes.

Laboratory studies investigate how people make decisions with multiple attributes

under consideration through well-designed experiments. The most common task con-

�gurations for studying multi-attribute decision making include intertemporal choice

that asks people to choose between a smaller sooner reward and a larger later reward,

and risky choice that asks people to choose between a safe smaller reward and a risky

larger reward. Other multi-attribute decision making tasks include such as choosing

food items with food appearance and nutrition information as two attributes (Enax

et al., 2016; Rramani et al., 2020), deciding scholarship award candidates based on

attributes of family income, GPA, and SAT scores (Russo and Dosher, 1983), and

choosing preferred clothes with attributes of clothes pictures and brands (Philiastides

and Ratcli�, 2013). While the aforementioned multi-attribute decision making re-

quires subjectively previous knowledge or preference on each attribute, other multi-

attribute decision making tasks involve an initial associative learning of attribute

values and a later decision making based on the combination of attributes (Kahnt

et al., 2011; Pelletier and Fellows, 2019).

One major theoretical issue that has dominated the multi-attribute decision mak-

ing �eld for years concerns whether people form a holistic representation from di�erent

attributes in each option before making their choices. Such an option-wise represen-

tation is a fundamental assumption in utility theory, with an important property of

transitivity of preferences (Neumann et al., 1947). For example, the multi-attribute

utility theory assumes that the utility of each option is a weighted sum of values of

each attribute and that choice is determined by choosing the option with the highest
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utility (Slovic et al., 1977). This utility theory was challenged by the fact that it

failed to explain some anomalies during the decision making process. More impor-

tantly, the utility theory cannot tell the psychological processes by which decision

makers form the holistic representation from the single attributes, therefore motivat-

ing the attribute-wise models including such as additive di�erence model (Tversky,

1969; Montgomery, 1977; Lindman and Lyons, 1978), decision �eld theory (DFT;

Busemeyer and Townsend, 1993; Busemeyer et al., 2019; Roe et al., 2001), and de-

cision by sampling theory (DbS; Noguchi and Stewart, 2014). The DFT and DbS

theories are important extensions of the sequential sampling models (SSMs). These

models not only account for the behavioral choices, but attempt to explain the psycho-

logical processes. Each theoretical model under both option-wise and attribute-wise

assumptions has received some empirical support, but relatively fewer studies have

systematically investigated these models via eye-tracking measures. Investigating the

option-wise vs. attribute-wise debate in multi-attribute decision making with eye �x-

ation data could cause challenges to the existing theories and provide deeper insights

into the psychological processes. In the following, I brie
y summarize the research

progress of intertemporal choice and risky choice, describe the empirical work on re-

solving the option-wise vs. attribute-wise debate, and highlight relevant eye-tracking

studies.

1.1.1 Intertemporal choice

Intertemporal choice asks people to make a choice between a smaller reward after

a shorter delay and a larger reward after a longer delay. Earlier studies under util-

ity theory took an option-wise approach to explain human behavior in intertemporal
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choice, by assuming that the subjective valuation of reward amount is discounted with

time delay. The speci�c functional form of how discounting manifests is under discus-

sion, evolving from the classical exponential discounting function (Samuelson, 1937),

to the hyperbolic discounting function and the quasi-hyperbolic function (Mazur,

1987; Ainslie and Haendel, 1983; Laibson, 1997). Hyperbolic discounting function

is usually considered to be an advantageous function because it explains the fact

that people discount future rewards more steeply when they have the opportunity

for immediate grati�cation than when both rewards occur in the future. Such an

option-wise viewpoint has been supported by neuroimaging studies, where the sub-

jective valuation was found to covary with 
uctuations of BOLD time-series data in

brain regions of ventromedial prefrontal cortex (vmPFC), ventral striatum, and dor-

sal striatum (Kable and Glimcher, 2007, 2010; Peters and B•uchel, 2009, 2010; Pine

et al., 2009; Wesley and Bickel, 2014; Rodriguez et al., 2015). A special assumption

regarding the discounting function maintains that the immediate and delayed options

were represented with di�erent functional forms (McClure et al., 2007, 2004; Peters

and B•uchel, 2009). However, regardless of di�erent shapes of discounting functions,

the option-wise approach commonly insists that people integrate rewards and time

delays into their subjective representations.

The other perspective of intertemporal choice argues that decision makers rely on

comparisons of reward and time delay attributes separately, without the necessity of

integrating rewards and time delays (Dai and Busemeyer, 2014; Scholten and Read,

2006, 2010; Cheng and Gonz�alez-Vallejo, 2016; Gonzalez-Vallejo, 2002; Marzilli Er-

icson et al., 2015). The proposal of attribute-wise models was driven by empirical

anomalies that cannot be explained away by any kind of the discounting function
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(Cheng and Gonz�alez-Vallejo, 2016; Cheng et al., 2018). One such anomaly is the

subadditive discounting and superadditive discounting (Read, 2001; Scholten and

Read, 2006, 2010), meaning that discounting is greater (or less) within sub-intervals

than over the entire interval, which deviates from the additive property predicted

by the hyperbolic discounting model. The trade-o� model proposed in Scholten and

Read (2010) was able to nicely account for the subadditive and superadditive e�ects,

by assuming that people make comparisons within each attribute. Another critic

is that the subjective representation of the reward amount and the time delay does

not seem to be independent. Gonzalez-Vallejo (2002) added stochastic component in

the attribute-wise comparison model to accommodate the violations of independence.

Based on the DFT, Dai and Busemeyer (2014) developed factorial con�gurations of

attribute-wise models of intertemporal choice. They identi�ed that the attribute-wise

representation with noise and dynamics provided the best account for the choice and

response time data. The advantage of attribute-wise models was further supported

by Cheng and Gonz�alez-Vallejo (2016), where both the proportional di�erence (PD)

model (Gonzalez-Vallejo, 2002) and trade-o� model (Scholten and Read, 2010) out-

performed the hyperbolic discounting model for predicting choices. Marzilli Ericson

et al. (2015) also identi�ed that attribute-wise models accounted for behavior data

better than option-wise models did (but see Wul� and van den Bos, 2018). Attribute-

wise models of intertemporal choice were relatively less connected to the neuroimaging

data (but see Turner et al., 2018).

However, most studies that compared option-wise and attribute-wise models have

heavily relied on the choice proportions and/or response time data. What can eye-

tracking data tell us about the information processing during the decision making?
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Is the advantage still held by attribute-wise models? Franco-Watkins et al. (2016)

�rst used eye-tracking to study intertemporal choice and they identi�ed that �xation

duration on each choice option was directly predictive of �nal choice. To address

the option-wise vs. attribute-wise debate, Reeck et al. (2017) identi�ed two types of

information search strategy (within-alternative and within-attribute), by performing

clustering analyses on eye �xation data when making intertemporal choice decisions.

Interestingly, their result suggested that more patient decision makers tended to adopt

within-attribute search strategy, while more impulsive decision makers tended to per-

form within-alternative search strategy. Furthermore, by manipulating the ease of

each search strategy in their second experiment, Reeck et al. (2017) suggested the

causal role of search strategy on choice preference. In a more recent study, Amasino

et al. (2019) collected eye �xation data using two task con�gurations of intertemporal

choice (Fig 1.1). They developed the multi-attribute versions of the drift di�usion

model (Ratcli�, 1978) based on both option-wise and attribute-wise assumptions,

and �t the models to choice and response time data for each subject. Their model

�tting and comparison results suggested an advantage of the attribute-wise model

over the option-wise model for the majority of the subjects. Further, by identifying

that the drift slopes of rewards and time delays were not correlated across subjects,

they maintained that rewards and time delays had independent contributions to the

intertemporal choice decision making. They also found that the relative di�erences of

drift slopes of rewards and time delays were related to the relative di�erences of �x-

ation duration and transition types, and thus explained the di�erence of drift slopes

as a result of attention bias. While Amasino et al. (2019) constructed SSMs and con-

nected the modeling result with eye �xation indices, eye �xation data had no e�ect on
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Figure 1.1: Timeline of an intertemporal choice decision making experiment
with eye tracking data collected . Figure extracted from Amasino et al. (2019).

determining the better cognitive model. Therefore, a methodological improvement is

expected to allow eye �xation data to inform comparisons of di�erent representation

assumptions.

1.1.2 Risky choice

If you were asked to decide between a lottery that o�ers $100 with a probability

of 50% and an o�er of $40 with certainty, which one would you choose? Questions

like this have been used extensively in the study of human risky choice as proxies

for real-life risky decision situations. Similar to intertemporal choice, one needs to

balance between the appeal of the attractive amount ($100) and the risk of getting

nothing, instead of gaining $40 for certain.

Earlier studies on risky decision making were devoted to identifying appropriate

functional forms of the subjective representation, including classical expected util-

ity theory (Bernoulli, 1954; Morgenstern and Von Neumann, 1953), prospect theory
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(Kahneman and Tversky, 1979), cumulative prospect theory (Tversky and Kahne-

man, 1992), subjective expected utility theory (Edwards, 1962; Savage, 1954), rank-

dependent utility theory (Quiggin, 2012), transfer-of-attention-exchange model (Birn-

baum, 2008), and parallel constraint satisfaction model (PCS; Gl•ockner and Herbold,

2011). A common assumption underlying these theories is the multiplicative trans-

formation from rewards and probabilities to the subjective counterparts (but see

Stewart, 2011, for a view of additive transformation), which is essentially the option-

wise representation. Contrary to the option-wise view, proponents of attribute-wise

models postulate that the psychological process of risky choice is to make a series

of comparisons on each attribute type. Priority heuristic (PH; Brandst•atter et al.,

2006) and the DbS are the leading models under attribute-wise assumptions. PH

posits that decision makers examine a series of \reasons" in a �xed order to make

their decision, where each reason requires performing the attribute-wise comparison.

In line with the attribute-wise comparison idea, DbS implements the attribute-wise

comparison in a SSM framework and assumes that decision makers make a series

of ordinal comparisons between attribute values that are stored in working memory.

However, DbS di�ers from PH in that it does not presume a �xed order of attribute

comparisons, nor that the decision is settled at any single comparison, but rather

a stochastic sampling process, which continues until the accumulated di�erence of

favorable comparisons reaches a decision boundary. Besides, DbS emphasizes the im-

portance of decision environment, by assuming that the attribute-wise comparisons

are with attribute values from working memory.
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The use of eye �xation data has largely facilitated the reexamination of risky

choice theories and provided abundant processing evidences to reconcile the inconsis-

tencies in di�erent theories. In an eye-tracking study, Russo and Dosher (1983) tested

whether within-attribute information search pattern dominated in risky choice with

non-independent attributes (i.e. reward and probability). By classifying patterns of

�xation sequences, they found that decision makers showed both within-alternative

and within-attribute information search, with great individual variability. Later stud-

ies found that PH failed to account for the frequent transitions between rewards and

probabilities when individuals search for information (Gl•ockner and Betsch, 2008a;

Johnson et al., 2008; Gl•ockner and Herbold, 2011), where such a pattern can be ex-

plained by DFT and PCS models. Su et al. (2013) compared the �xation transition

patterns from a risky task with a proportion calculation task that requires conscious

multiplication calculation. They found similar �xation transition patterns from the

two tasks, but with large individual variability. Stewart et al. (2016) collected eye

�xation data based on simple risky choice. By conducting thorough statistical anal-

yses on eye �xation data as well as their relation with behavioral choices, Stewart

et al. (2016) discovered that eye �xations strongly drove the �nal choices, and that

the e�ect was independent from attribute values.

In a more recent study, Glickman et al. (2019) investigated simple risky decision

making with a pictorial presentation of rewards and probabilities while simultaneously

collecting eye-tracking data. Glickman et al. (2019) carefully tested many risky choice

models by �tting the models to choice and response time data. Speci�cally, they

constructed attribute-wise models that accumulated either the normalized attribute
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value di�erences or the result of ordinal comparison according to DbS, and option-

wise models that had one-layer or two-layer leaky accumulators. The eye �xation data

were fed into the accumulators to modulate the sequential sampling processes. Their

model �tting and model comparison results identi�ed that option-wise model with

2-layer leaky accumulators outperformed other model variants. It is worth noting

that a leakage mechanism was included to account for the recency e�ect that later

�xated item tends to have a larger e�ect on the �nal choice. Furthermore, they found

that subjects who preferred within-option representation tend to make better choices

(i.e. choosing the option with higher expected utility).

Taken together, although the attribute-wise models of risky decision making in-

cluding PH and DbS provide intriguing explanations of the information integration

process and a good account for the behavioral choice data, they surprisingly did not

gain much support from eye �xation data. Option-wise representation of risky choice,

however, seems to be a more plausible mechanism, in that (1) within-alternative �xa-

tion transitions are more frequent than within-attribute �xation transitions, according

to analyses from several datasets; (2) option-wise models with two-layer leaky accumu-

lators decisively outperformed other attribute-wise models in the study of Glickman

et al. (2019). However, it remains unclear how option-wise representation can explain

within-attribute transitions. Are they re
ecting some form of attribute-wise represen-

tation, or simply necessary parts of �xation transitions? In addition, large individual

di�erences in their eye �xation patterns exist, calling into question whether the dif-

ference is caused by di�erent decision-making strategies or by individual manners of

eye movements.
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1.1.3 Discussion

So far I have reviewed some important research progress on multi-attribute de-

cision making studies and emphasized the role of eye �xation data in elucidating

theoretical problems. Although the goal of this thesis is closely related to the debate

between option-wise and attribute-wise representation, I do not seek for a universal

answer to the debate due to the following three reasons. First, previous studies found

that the employment of each representation form is strongly a�ected by the task na-

ture, in terms of correlational or independent relations between attributes (Payne and

Braunstein, 1978; Svenson, 1979; Russo and Dosher, 1983). Recent studies revealed

that decision makers internalized statistical associations between risk and reward

(Pleskac and Hertwig, 2014; Skylark and Prabhu-Naik, 2018) and between time delay

and reward (Skylark et al., 2020). This type of inherent statistical relation has not

been identi�ed with other types of multi-attribute decision making. Second, even for

the same type of decision making (e.g. risky choice), information processing might be

a�ected by di�erent presentation formats in which attribute values are shown, such

as numerical presentation (Stewart et al., 2016) or pictorial presentation (Glickman

et al., 2019). For the convenience of collecting eye tracking data, di�erent attributes

are usually placed on di�erent locations, which could facilitate within-attribute tran-

sitions, compared to natural decision making situations (Russo and Dosher, 1983).

Third, previous studies have found the change of searching strategies during the de-

cision making process (Raaij, 1977).
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Figure 1.2: Diagrams of di�erent approaches to combine eye �xation data
with computational models in decision making. In each diagram, gray square
boxes denote observable variables that do not come from model outputs while trans-
parent square boxes denote variables from model outputs. The variables from model
outputs serve as model predictions of their experimental counterparts. Arrows repre-
sent logical relations between di�erent variables under each approach. Four di�erent
approaches are: (A) Statistical modeling, (B) Behavioral modeling, (C) Fixation-
modulated modeling, and (D) Generative modeling. See text for more explanation.
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1.2 Computational models of eye �xation data

The incorporation of eye �xation data has provided important insights into the

underlying cognitive processes in decision making problems. However, di�erent stud-

ies di�er greatly in the way that eye �xation data are utilized. Figure 1.2 summarizes

the main approaches to combine eye �xation data with computational models: sta-

tistical modeling, behavioral modeling, �xation-modulated modeling and generative

modeling. Statistical modeling - the most straightforward approach - �rst quanti�es

continuous eye-tracking measures into concrete summary statistics, and then con-

ducts a series of statistical tests based on parametric or nonparametric models (e.g.,

Russo and Dosher, 1983; Reed, 1973; Stewart et al., 2016). This approach allows

researchers to infer the computational and cognitive mechanisms from the statisti-

cal testing results, while leaving a thorough understanding of how information gets

processed elusive. Formal cognitive models provide mechanistic explanations about

information processing, so that in theBehavioral modelingapproach, cognitive mod-

els are employed to account for the behavioral choice and response time data, with

a second-step correlation assessing similarity between model mechanisms and eye

�xation summary statistics. To directly assess the e�ect of eye �xation data on the

cognitive processes, a further step is to feed eye �xation data into the cognitive models

and to test how well the models produce the choice outcome, termed as theFixation-

modulated modelingapproach. The most complex approach -Generative modeling-

takes a step further to model the attentional process, such that the cognitive models

predict eye �xation data as well as behavioral response data. Each approach will be

discussed in detail in the next sections.
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1.2.1 Statistical modeling

Statistical modeling here refers to a wide range of statistical analyses that are

applicable on eye �xation data. Statistical models, technically, do not belong to

the regime of computational models. However, since many previous studies using

eye-tracking measures rely on statistical models to infer the underlying cognitive

mechanisms during multi-attribute decision making, I include statistical models as a

separate section for completeness purposes.

Statistical modeling of eye �xation data is typically performed on a series of statis-

tic measures, including but not limited to the total �xation duration before making

the choice, total number of �xations before making the choice, �xation duration on

each �xation, �rst/last �xation in a trial, types of �xation transitions. For the pur-

pose of identifying option-wise or attribute-wise representation, one critical statistical

analysis is to compare the within-alternative and within-attribute information search

in �xation sequences (Russo and Dosher, 1983; Reeck et al., 2017; Stewart et al.,

2016). Here within-alternative searching pattern refers to attending to attributes

within the same option consecutively, whereas within-attribute searching pattern in-

dicates attending to di�erent alternatives within the same attribute consecutively.

In real experimental data, �xation sequences of pure within-alternative or within-

attribute rarely exist, and instead �xations are often analyzed in shorter segments,

with a sequence of information search de�ned by two, three or four consecutive �x-

ations. The better description of decision making strategy is decided by the relative

larger proportion of within-alternative and within-attribute transitions.

Note that throughout this thesis, the terms within-alternative and within-attribute

denote two types of information search patterns, where option-wise representation and
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attribute-wise representation denote two types of information processing strategies.

Although many previous studies have assumed an asserted link between the �xation

transition pattern and the processing strategy, this is not necessarily the case (Russo

and Dosher, 1983), considering for example the existence of overt attention.

1.2.2 Choice modeling and post-hoc correlation

One way to combine computational modeling with eye-tracking data is to perform

model �tting and model comparison on the behavioral choice data, and then corre-

late model parameters with eye-tracking data indices. This approach can be quite

convenient to implement, because most mechanistic models in the �eld of decision

making were designed for explaining behavioral choice and/or response time data.

The intertemporal choice modeling work in Amasino et al. (2019) is a good illus-

tration of this approach, where they constructed cognitive models to �t choice and

response time data and then correlated eye tracking indices with behavioral param-

eters. Speci�cally, Amasino et al. (2019) developed the multi-attribute DDM, where

the drift rates associated with each attribute were constructed under either option-

wise or attribute-wise assumption. After estimating the drift slope parameters, they

correlated across subjects the slope di�erence with two eye �xation measures - an

attribute index quantifying the looking time di�erence at reward and time delay at-

tributes and a Payne index quantifying the di�erence of within-option transitions

and within-attribute transitions, con�rming that more attention is allocated on the

attribute for which they show a higher drift slope.

In another example of correlating eye �xation measures with cognitive modeling,

Noguchi and Stewart (2018) developed the multi-alternative decision by sampling
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model (MDbS) as a process model for multi-alternative decision making, with a focus

on the three context e�ects: attraction, compromise and similarity. Di�erent from

previous models that explain multi-alternative decision making, Noguchi and Stewart

(2018) emphasized the attentional bias on the decision making process. In particular,

they speci�ed that the probability of assessing each attribute value is a�ected by its

similarity to other attribute values in working memory. Later, eye �xation transition

data were shown to be qualitatively consistent with model simulations based on a

particular set of parameter values, therefore suggesting the adequacy of the compu-

tational model using the eye-tracking data.

Theoretically, such a post-hoc correlational approach between cognitive models

and eye �xation data is in line with the two-step correlational approach in neural

studies. Under the two-step correlational approach in neural studies, cognitive mod-

els are �rst assessed with behavioral choice and/or response time data, and model

parameters or model representations are then correlated with neuroimaging data or

EEG data (Turner et al., 2019b), which has greatly inspired a variety of �ndings

in the �elds such as perceptual decision making (Forstmann et al., 2008, 2010), in-

tertemporal choice (Kable and Glimcher, 2007; Turner et al., 2018; Rodriguez et al.,

2015, 2014), and reinforcement learning (Daw et al., 2011; da Silva and Hare, 2020;

Collins and Frank, 2018).

1.2.3 Fixation-modulated modeling

Although the two-step correlational approach provides a reasonable means to as-

sociate cognitive mechanisms with eye �xation data, the information contained in eye

�xation data does not a�ect the cognitive processes within the model, and thus it is

18



hard to evaluate to what extent the attentional process drives people to make speci�c

choices. An advancement to the two-step correlational approach is to consider eye

�xation data as an exact proxy for attention and to allow eye �xation data directly

drive the cognitive processes in the model. The seminal work of this approach is the

attentional drift-di�usion model (aDDM; Krajbich et al., 2010), as an extension of

the drift di�usion model. In their value-based decision making task, subjects chose

between two snack items on a computer screen. Subjects were allowed to freely look

at both items before making the choice and their eye movement data were simul-

taneously recorded. At most trials, subjects switched their �xations back and forth

between the two items for a few times before they made the �nal choice. When �tting

the model using the collected eye �xation data, Krajbich et al. (2010) randomly sam-

pled �xation times from experimental eye �xation data for each pair of subjectively

valued item, and allowed the sequential sampling process to be modulated by which

item gets �xated. By doing so, Krajbich et al. (2010) successfully predicted subjects'

choices with a high accuracy, showing a signi�cantly better prediction than the ran-

dom model did, where choices were only dictated by the subjective ratings of snack

items. The aDDM framework was further extended to the three-alternative simple

choice task (Krajbich and Rangel, 2011), decision making tasks in numerous contexts

(Smith and Krajbich, 2018), decision making with nine alternatives (Thomas et al.,

2020), and simple risky choice (Glickman et al., 2019).

The aDDM framework, although fruitful and still in use, has faced many challenges

during the implementation of the models. There has not been a uni�ed solution to

these challenges. In the following, I discuss three prominent challenges: choosing
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the accumulation unit of SSMs, specifying mechanistic assumptions of SSMs, and

terminating accumulation process.

The �rst challenge concerns the choice of the accumulation unit of SSMs. Although

the sequential sampling process is theorized as a continuous process, it is typically

approximated as a discrete process (Brown et al., 2006). Hence, when dealing with

eye �xation data, we need to establish the realization of the single accumulation step.

More speci�cally, we need to decide what corresponds to the accumulation unit in

SSMs, and researchers have mixed opinions about whether each �xation should be

treated as a single accumulation step or multiple steps. The aDDM framework, from

its inception, has implemented one �xation as multiple steps in the accumulation

process (Krajbich et al., 2010; Krajbich and Rangel, 2011), where the number of

the step depends on the �xation duration. On the contrary, Glickman et al. (2019)

implemented each �xation as a unit of accumulation process, thereby ignoring �xation

duration. Glickman et al. (2019) further suggested that their best-�tting model with

each �xation as the accumulation step showed better performance than the best-

�tting model with each �xation as multiple accumulation steps. To the best of my

knowledge, no other empirical studies have attempted to make this comparison.

The second challenge is how to specify mechanistic assumptions of SSMs, such as

adding non-linear components of information leakage and lateral inhibition between

accumulators (Usher and McClelland, 2001), allowing primacy, recency, discounting

of attentional e�ect, or reversely, reducing to the most simple linear ballistic accumu-

lator models (LBA; Brown and Heathcote, 2008; Donkin et al., 2011). To investigate

the necessity of di�erent mechanistic assumptions, Ashby et al. (2016) systematically

compared the e�ect of incorporating leakage, primacy, recency and discounting factor
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into the SSMs. By comparing how well di�erent model variants predicts the behav-

ioral choice, they suggested the importance of including information leak mechanism

and possibly also primacy/recency e�ects. The importance of leakage was further

supported by Glickman et al. (2019), where the estimated leakage parameters were

well above zero in their gaze-modulated accumulation models for risky decision mak-

ing. Implementing SSMs also requires deciding between a relative threshold and an

absolute threshold. Mullett and Stewart (2016) suggested the adequacy of using a

relative threshold based on the the gaze cascade e�ect. Together, although previous

studies have shed some light on the speci�cations of SSMs, it is not clear to what ex-

tent each conclusion can be understood as a general rule of this modeling framework.

When feeding eye �xation data into SSMs, there are still a lot of arbitrary choices to

make, and it is unrealistic for empirical studies to test all plausible con�gurations.

Another challenge concerns the termination of the sequential sampling process.

As a type of processing evidence, the total length of eye �xations on each trial is

supposed to be consistent with the duration of the response time, given the same

onset and o�set time. However, the response times predicted from SSMs by feeding

in eye �xations hardly agree with the experimental response times, which causes a

major setback to this �xation-modulated modeling approach. For example, Krajbich

et al. (2010) implemented the termination of sequential sampling process as hitting the

threshold value, such that the simulated response times can be higher or lower than

the experimental response times on the trial level. Some solutions to this problem were

raised. Smith and Krajbich (2018) fed ordered �xation times into accumulators until

reaching the empirical response times, and randomly sampled more �xation times

if empirical response time was not met at the time when threshold was hit. More
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recently, Thomas et al. (2019) developed a gaze-weighted linear accumulator model

(GLAM) that computed drift rates as the relative �xation duration on each choice

option, and produced choices and response times based on the tractable likelihood

of DDM. Hence, GLAM circumvented the inconsistency problem, but it is unknown

whether useful information gets lost by reducing eye �xation data into single drift

rates on each trial.

In addition to the aforementioned challenges, by treating eye �xations as exoge-

nous input to SSMs, aDDM and its variants are agnostic about how those eye �xations

are generated and therefore cannot explain the attentional process, as is pointed out

by many previous studies (Krajbich et al., 2010; Krajbich, 2019; Song et al., 2019;

Towal et al., 2013). This leads to the generative modeling approach that is discussed

in the next section.

1.2.4 Generative modeling

Generative modeling di�ers from previous three approaches in that it considers

both eye �xations and behavioral responses as integral components of the cognitive

model, and it attempts to explain the attentional process (Gluth et al., 2020; Jang

et al., 2020; Callaway et al., 2020; Song et al., 2019). Generative models make speci�c

assumptions on how eye �xations occur as a result of stimulus features and cognitive

processes, and how eye �xations interact with �nal choice.

To account for the attentional process in multi-alternative decision making, Towal

et al. (2013) proposed that visual salience and item values jointly drive eye �xations.

Speci�cally, the �xation duration was modeled with a di�usion process and the �x-

ation switches between options as a natural consequence of reaching the di�usion

22



threshold for the currently �xated item. The choice process was then modeled with

another di�usion process similar to aDDM, where the preference formation was driven

by the item values and is modulated by the �xation. As such, the item values were

employed twice in the model for predicting the �nal choice. Towal et al. (2013) tested

this theoretical framework in a four snack item choice task.

In contrast to the unidirectional account of Towal et al. (2013) where attention

a�ects preference formation, but not in the opposite direction, Gluth et al. (2020)

assumed a reciprocal relation between the preference formation and the attentional

process. Speci�cally, according to Gluth et al. (2020), whereas eye �xations are

able to a�ect preference formation through the previous aDDM process described in

Krajbich et al. (2010), preference formation could in turn a�ect attentional process

by adjusting the probability of �xating on each item. Using this model, Gluth et al.

(2020) explained the distraction e�ect in multi-alternative decision making as an

attentional mechanism, rather than a result of divisive normalization (Louie et al.,

2013).

In recent years, Bayesian sampling theory and Bayesian rational framework have

been widely adopted to explain the attentional process. Under these frameworks, eye

�xations serve as a means of acquiring information and reducing uncertainty (Song

et al., 2019; Callaway et al., 2020; Jang et al., 2020). In a simulation study, Song et al.

(2019) explained the attentional process including the duration of gaze �xation and

switch of gaze via the Bayesian proactive sampling theory that aims at maximizing

information gain. Under their theory, the attractiveness of snack item in Krajbich

et al. (2010) is represented as a probability distribution instead of a scalar value,

and the gaze �xation is for gleaning samples from the probability distribution of
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attractiveness. By choosing a proper combination of parameter values, the Bayesian

proactive sampling framework was able to account for key characteristics observed

in Krajbich et al. (2010). Further studies attempted to claim the attentional process

as a rational attention mechanism by marrying the Bayesian sampling theory with

Markov decision process (Callaway et al., 2020; Jang et al., 2020).

Despite the dissimilar theoretical bases and mechanistic assumptions about atten-

tional processes underlying these generative modeling studies, a common di�culty

facing them is how to develop a principled method that allows us to infer model pa-

rameters from the combined behavioral and eye �xation data. More concretely, as

the output of the generative models, eye �xation data should be included as a part

of the likelihood function when evaluating the goodness of model �t, which poses a

theoretical and technical challenge. Due to the di�culty of model �tting using eye

�xation data, Song et al. (2019) examined their Bayesian proactive sampling model by

simulating a series of model outputs and comparing them with empirical eye �xations,

sidestepping the problem of model �tting.

Other studies have evaluated the likelihood functions based on a set of summary

statistics from eye �xation data, as well as from the behavioral choice and/or response

time (Gluth et al., 2020; Callaway et al., 2020; Towal et al., 2013; Jang et al., 2020).

When relying on summary statistics from both data streams, one noticeable problem

is that eye �xation data tend to heavily in
uence the likelihood function, sometimes

causing negligible e�ects from the behavioral choice and/or response time data. Gluth

et al. (2020) tackled this problem by manually overweighing the summary statistics

from choice in the likelihood function. So far, there has not been a principled solution

to the likelihood calculation.
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1.3 Goal of the dissertation

There are two primary aims of this dissertation: 1. To better understand informa-

tion processing in multi-attribute decision making and compare di�erent theories; 2.

To develop and compare methods that combine eye �xation data with computational

cognitive models, drawing upon two strands of research into modeling eye �xation

data. In this thesis, I develop two types of computational models: the �rst one is to

feed eye �xation data into the SSMs for predicting choice outcome, where the second

one is to construct a generative modeling framework that can simultaneously predict

both choice and eye �xation data. Models are examined using existing datasets on

intertemporal choice (Amasino et al., 2019) and simple risky choice (Stewart et al.,

2016). For each type of model, I present model structures, show simulation and

parameter recovery results, �t di�erent model variants to experimental data, and

evaluate model performance. Finally, contributions and limitations of the current

modeling work are discussed.

The remaining part of the thesis proceeds as follows: the second chapter shows

critical experimental �ndings in the Amasino et al. (2019) and presents modeling

work under the �xation-modulated modeling approach; the third chapter describes a

novel generative modeling framework on modeling eye-�xation data in intertemporal

choice; the fourth chapter deals with the model inference problem in the generative

modeling framework; the �fth chapter describes a similar generative framework for

the eye-tracking data from the simple risky choice task (Stewart et al., 2016), and

the �nal chapter concludes the dissertation with contributions and limitations of the

current work.
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Chapter 2: Fixation-modulated models for intertemporal

choice

In this chapter, I developed �xation-modulated models for intertemporal choice

decision making. In di�erent models, I made di�erent assumptions in terms of how

people form representations of choice options, based on attribute values (i.e. rewards

and time delays) and momentary eye movements. This chapter is organized in the

following way. I begin by inspecting an intertemporal choice dataset from Amasino

et al. (2019) and identifying important characteristics in the dataset. Next, I describe

the speci�cations of the �xation-modulated models and explain di�erences between

model con�gurations. Then, I show the model �tting procedure, evaluate model �t of

di�erent model con�gurations, and compare the �xation-modulated models to some

baseline models. In the end, I summarize this chapter, discuss the implications from

the modeling results, and address some limitations.

2.1 Experimental data inspection

The modeling work in this chapter is based on the dataset from Amasino et al.

(2019), with its experimental design shown in Figure 1.1. Hence, this chapter begins

with a variety of analyses on the behavioral and eye �xation data. In addition,

the behavioral choice data were �tted to a standard hyperbolic discounting model to
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provide an initial assessment of the discounting behavior. For notational convenience,

the smaller and sooner option in each choice pair is denoted as SS, containing a reward

amount rSS and a time delay tSS. The larger and later reward is denoted as LL,

containing a reward amountrLL and a time delaytLL . According to the experimental

design of this dataset, there are two types of orientations for placing the four features

(i.e. rSS, rLL , tSS, and tLL ) on the computer screen. In the primary experiment,

the two reward values (i.e. rSS and rLL ) are always on the top of the screen, with

left/right randomly decided on each trial. In the replicate experiment, the two reward

values are always on the left of the screen, with top/bottom randomly decided on each

trial.

2.1.1 Behavioral data analysis

First, to examine the summary statistics from the behavioral choice and response

time data, Figure 2.1 shows proportions of choosing LL options (Prop(LL)) and joint

distributions of choices and response times, from each of the two datasets. In both

datasets, the distribution of Prop(LL) is heavily left skewed, suggesting an overall

preference of choosing LL options, across subjects. Note that 3 out of 105 subjects in

the primary dataset, and 2 out of 85 subjects in the replicate dataset did not make

any SS choice. The distributions of response times associated with each of the SS

or LL choice are skewed toward faster responses, suggesting that subjects have made

their choices well below the given time limit of 10s in the experiment.

According to the experiment design,tSS was �xed as 0 days whilerLL was �xed

as $10 in both primary and replicate datasets.tLL ranged from 1 to 365 days while

rSS ranged from $0:5 to $9:5, creating 140 factorial combinations of choice options
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Figure 2.1: Behavioral choice proportions and response time distributions.
The left two panels illustrate the distributions of proportion of choosing LL options
(Prop(LL)), across subjects, in the primary dataset and replicate dataset. The right
two panels show the joint distributions of choices and response times, collapsing
across subjects within each dataset. Response times with SS choices are plotted on
the negative axis while response times with LL choices are plotted on the positive
axis.
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for each subject. Hence, in the next part, I examined how the average choice prefer-

ence changes with di�erent combinations ofrSS and tLL values. Figure 2.2 suggests

that Prop(LL) across subjects tends to decrease with both the increase ofrSS and

the increase oftLL . Such a pattern is consistent in the two datasets. By visually

comparing the change of Prop(LL) withrSS and tLL in the two datasets, there is a

stronger tendency to choose LL options in the replicate dataset than in the primary

dataset, indicated by the larger red area in the right panel than in the left panel of

Figure 2.2. Taken together, these results suggest that there is an association between

Prop(LL) and each of rSS and tLL , and that subjects in the replicate dataset have

stronger tendency to make LL choices than subjects in the primary dataset. Such a

di�erent tendency of choosing LL options was not intentionally manipulated in the

original experiment.

2.1.2 Hyperbolic model �t with choice data

To gain better understanding of the behavioral data, I �t the hyperbolic discount-

ing model to the individual choice data. The hyperbolic discounting model speci�ed

the subjective valuations of SS and LL (SVSS and SVLL , respectively) as an integral

form of their respective reward amount and time delay, such that

SVSS =
rSS

1 + ktSS
; and

SVLL =
rLL

1 + ktLL
; (2.1)

where k is the hyperbolic discounting parameter, and lower values ofk indicate

the more patient choice preference. The subjective valuations from the hyperbolic

discounting model were then passed into the softmax decision function to generate
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Figure 2.2: Proportion of choosing LL options for each rSS and tLL combi-
nation, averaged across subjects. For each subject,rSS ranges from $0:5 to $9:5
and tLL ranges from 1 to 365 days.tSS is �xed as 0 days whilerLL is �xed as $10
in this experiment. The color scale indicates the proportion of making LL choices
(Prop(LL)), averaged across subjects, where red color denotes higher proportion of
making LL choices. The left panel is averaged across 105 subjects in the primary
dataset, and the right panel is averaged from 85 subjects in the replicate dataset.

the choice probability. I denote the probability of making LL choices as P(LL), which

can be expressed as

P(LL) =
1

1 + e� m(SVLL � SVSS )
; (2.2)

where m is the softmax temperature parameter and higher values ofm indicate

the more deterministic behavior. After determining the functional forms of hyperbolic

model and softmax decision function, parametersk and m were freely estimated for

each subject. As a notational convenience, for each subject, the binary choices across

trials were denoted asR = [ R1; R2; : : :], where Ri = 1 if a LL choice was made on

trial i , and Ri = 0 if a SS choice was made on triali . Then, for possible parameter

combination � = [ k; m], the log likelihood (L) given the experimental responsesR
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was calculated by summing up all the logarithm of binomial probabilities across trials,

such that

L( � jR) =
X

i

log B(Ri ; P r i ); (2.3)

wherePr i is calculated through Equations 2.1 and 2.2 by plugging in four feature

values (rSS, tSS, rLL and tLL ) from trial i and the parameter value� . B(a,b) denotes

a Binomial probability density with the number of trials as a, and the success prob-

ability as b. The parametersk and m were estimated using theoptim function in R

to maximize log likelihood values for each subject.

Model �t with parameters k and m converged for each subject. The left two

columns in Figure 2.3 present the distributions of parameter estimates of log(k) and

log(m) across subjects, from the two datasets. 12 out of 105 subjects in the pri-

mary dataset, and 19 out of 85 subjects in the replicate dataset were found to have

extremely small k estimates, speci�cally, with log(k) smaller than -10. Other than

these subjects, the individualk estimates were consistent with thek estimates ob-

tained in Amasino et al. (2019). To evaluate how well the hyperbolic discounting

model �t the choice data, I calculated the average predictive probability across all

trials for each subject. Speci�cally, I fed the estimatedk and m values of each subject

into the Equations 2.1 and 2.2 to calculate probabilities of making choices from the

experimental data, and averaged the probabilities across trials. The right column

of Figure 2.3 provides the distribution of the predictive probability across subjects,

where the average predictive probability across subjects reaches 0.895 in the primary

dataset and 0.896 in the replicate dataset. These results suggested an excellent �t
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